LANMR'08
Fourth Latin American Workshop on Non-Monotonic Reasoning 2008

Proceedings of the fourth Latin American Workshop on Non-Monotonic Reasoning 2008 (LANMR'08)
Facultad de Ciencias de la Computación de la Benemérita Universidad Autónoma de Puebla
Puebla, México, October 22 - 24, 2008
Edited by

Mauricio Osorio *
Ivan Olmos **

* Universidad de las Américas Puebla, México
** Benemérita Universidad Autónoma de Puebla, México

Preface

Organization

Table of Contents

Papers

1. An Automata-based algorithm for description logics around SRIQ
 Magdalena Ortiz

2. Generating complex ontology instances from documents
 Roxana Danger, Rafael Berlanga

3. Structural graph-based representations used for finding hidden patterns
 Ivan Olmos, Jesus A. González

4. Association rule-based Markov Decision Processes
 Ma.de Guadalupe García-Hernández, José Ruiz-Pinales, Alberto Reyes-Ballesteros, Eva Onaindía,
 J. Gabriel Aviña-Cervantes, Sergio Ledesma, Donato Hernández

5. P-stable models of strong kernel programs
 José Luis Carballido, Claudia Zepeda

6. A statistical approach to crosslingual natural language tasks
 David Pinto, Jorge Civera, Alfons Juan, Paolo Rosso, Alberto Barrón-Cedeño

7. Brief study of the relation between AGM postulates (-7) and (+7) under non-classical logics
 Ruslán Ledesma
8. Coordinated multi-agent exploration
 Abraham Sánchez L., Alfredo Toriz P.

9. CTL AgentSpeak(L): a specification language for agent programs
 Alejandro Guerra-Hernández, José Martín Castro-Manzano, Amal El-Fallah-Seghouchni

10. Efficient computation of the degree of belief in a propositional theory
 Carlos Guillén, Guillermo De Ita, Aurelio López-López

11. Conditional preferences in P-RASP
 Stefania Costantini, Andrea Formisano

12. Semi-negative normal programs based on p-stable semantics
 Claudia Zepeda, José Luis Carballido

Posters

13. Agents's competition for selecting a representative
 Guillermo De Ita, Mireya Tovar, Meliza Contreras

14. The Pac Logic in the properties of C(w) and C(min)
 J. Arrazola, E. Ariza, V. Borja

15. Semantic information storage and retrieval in a peer-to-peer corporate memory
 Ana B. Rios-Alvarado, Ricardo Marxlin-Jiménez, R. Carolina Medina-Ramírez

16. AGM postulates in Answer Sets
 J. C. Acosta Guadarrama

submitted by Ivan Olmos, Claudia Zepeda, 21-Oct-2008
published on CEUR-WS.org, 24-Oct-2008
Semantic Information storage and retrieval in a Peer-to-Peer corporate memory

Ana B. Rios-Alvarado, Ricardo Marcelin-Jiménez, R. Carolina Medina-Ramírez

Universidad Autónoma Metropolitana - Iztapalapa
México, DF

Abstract. The paper presents a semantic approach for storing and retrieving documents from a Corporate Semantic Web (CSW). We illustrate the approach through the embedding of two graphs G_1 into G_2. G_1 represents the CSW and whose nodes represent a collection of documents having a common range of semantic indices. G_2 represents a P2P storage network. We use "Ant Colony Optimization" metaheuristic, to solve the corresponding instances of graph embedding.

1 Introduction

The semantic Web approach [1] relies on ontologies, annotations and formal knowledge representation languages. A Corporate Semantic Web (CSW) is built up from ontologies, resources (documents or humans) and annotations on these resources, where these annotations rely on the ontologies[2]. There is a meetpoint between Web and corporate memories: both gather heterogeneous and distributed information and share the same concern about the relevance of information retrieval. Nevertheless, corporate memory has a context, an infrastructure and a scope limited to the organisation where they are applied.

IP routing task, at the Internet, is supported by two complementary procedures: table maintenance and table querying. In this work, we propose the organization of document storage and retrieval in a Corporate Semantic Web (CSW), based on two procedures: First, we solve content location and built a table, whose entries shows the places in charge of a given set of documents. Second, we perform look-up on this table in order to consult the corresponding contents. An ontology can be regarded as a hierarchy of concepts. Each of them corresponds to a semantic index. Besides, each semantic index has associated a collection of documents belonging to the CSW. Therefore, we can model a CSW as a graph G_1 (Fig. 1), where each node is featured by two parameters: a range of semantic indices and a weight. The first one represents the concepts it gathers according to its place in the hierarchy. The second one, represents the amount of information given by the collection of documents in the given range. We model the storage network using a second graph G_2. Each of its nodes (from now on stores) has an associated capacity c_j that features the maximal amount of information it is able to contain.
2 Methodology and assumptions

Content placement implies the embedding of G_1 into G_2. We decided to tackle our instances of graph embedding using the ant colony optimization algorithm (ACO)[3]. Our method consists of creating z scout ants. Every ant is charged to perform a random depth first search on G_1. As each ant travels across the graph, it associates the nodes that visits to a given store j of G_2. When the aggregated nodes weight exceeds the capacity of the current store, it reassigns the last node to successor store $j+1$ and starts this filling process over again, as long as there are still nodes to visit.

When our particular instance of graph embedding is successfully solved, each store receives a copy of the look-up table. Each row in this table has two parts, the left entry indicates a range of semantic indices, while the right entry indicates the store in charge of the documents in this range. Figure 1 shows how G_1 has been embedded into G_2 and the Look-up Table. We have used a discrete event simulator [4], for implementing our algorithm.

![Graph Embedding](image)

Fig. 1. Embedding the corporate semantic Web (G_1) into a distributed storage network (G_2)

We have run our simulation using a variable number z of ants, nodes in G_1 have weights following an uniform random distribution, and stores in G_2 have a constant capacity.

3 Conclusion

We have presented a semantic approach for storing and retrieving documents from a Corporate Semantic Web (CSW). We illustrate the approach through the embedding of two graphs G_1 into G_2. We have used ”Ant Colony Optimization”, to solve the corresponding graph embedding.
From preliminary results, we can say that there is an optimal number of initial ants producing the highest variance. This optimal depends on the size of G_1, and is roughly $O(v(n))$, where n is the total number of nodes in G_1.

References